Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tor directly controls the Atg1 kinase complex to regulate autophagy.

Identifieur interne : 001375 ( Main/Exploration ); précédent : 001374; suivant : 001376

Tor directly controls the Atg1 kinase complex to regulate autophagy.

Auteurs : Yoshiaki Kamada [Japon] ; Ken-Ichi Yoshino ; Chika Kondo ; Tomoko Kawamata ; Noriko Oshiro ; Kazuyoshi Yonezawa ; Yoshinori Ohsumi

Source :

RBID : pubmed:19995911

Descripteurs français

English descriptors

Abstract

Autophagy is a bulk proteolytic process that is indispensable for cell survival during starvation. Autophagy is induced by nutrient deprivation via inactivation of the rapamycin-sensitive Tor complex1 (TORC1), a protein kinase complex regulating cell growth in response to nutrient conditions. However, the mechanism by which TORC1 controls autophagy and the direct target of TORC1 activity remain unclear. Atg13 is an essential regulatory component of autophagy upstream of the Atg1 kinase complex, and here we show that yeast TORC1 directly phosphorylates Atg13 at multiple Ser residues. Additionally, expression of an unphosphorylatable Atg13 mutant bypasses the TORC1 pathway to induce autophagy through activation of Atg1 in cells growing under nutrient-rich conditions. Our findings suggest that the direct control of the Atg1 complex by TORC1 induces autophagy.

DOI: 10.1128/MCB.01344-09
PubMed: 19995911
PubMed Central: PMC2815578


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tor directly controls the Atg1 kinase complex to regulate autophagy.</title>
<author>
<name sortKey="Kamada, Yoshiaki" sort="Kamada, Yoshiaki" uniqKey="Kamada Y" first="Yoshiaki" last="Kamada">Yoshiaki Kamada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan. yoshikam@nibb.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585</wicri:regionArea>
<wicri:noRegion>Okazaki 444-8585</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshino, Ken Ichi" sort="Yoshino, Ken Ichi" uniqKey="Yoshino K" first="Ken-Ichi" last="Yoshino">Ken-Ichi Yoshino</name>
</author>
<author>
<name sortKey="Kondo, Chika" sort="Kondo, Chika" uniqKey="Kondo C" first="Chika" last="Kondo">Chika Kondo</name>
</author>
<author>
<name sortKey="Kawamata, Tomoko" sort="Kawamata, Tomoko" uniqKey="Kawamata T" first="Tomoko" last="Kawamata">Tomoko Kawamata</name>
</author>
<author>
<name sortKey="Oshiro, Noriko" sort="Oshiro, Noriko" uniqKey="Oshiro N" first="Noriko" last="Oshiro">Noriko Oshiro</name>
</author>
<author>
<name sortKey="Yonezawa, Kazuyoshi" sort="Yonezawa, Kazuyoshi" uniqKey="Yonezawa K" first="Kazuyoshi" last="Yonezawa">Kazuyoshi Yonezawa</name>
</author>
<author>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19995911</idno>
<idno type="pmid">19995911</idno>
<idno type="doi">10.1128/MCB.01344-09</idno>
<idno type="pmc">PMC2815578</idno>
<idno type="wicri:Area/Main/Corpus">001458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001458</idno>
<idno type="wicri:Area/Main/Curation">001458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001458</idno>
<idno type="wicri:Area/Main/Exploration">001458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tor directly controls the Atg1 kinase complex to regulate autophagy.</title>
<author>
<name sortKey="Kamada, Yoshiaki" sort="Kamada, Yoshiaki" uniqKey="Kamada Y" first="Yoshiaki" last="Kamada">Yoshiaki Kamada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan. yoshikam@nibb.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585</wicri:regionArea>
<wicri:noRegion>Okazaki 444-8585</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshino, Ken Ichi" sort="Yoshino, Ken Ichi" uniqKey="Yoshino K" first="Ken-Ichi" last="Yoshino">Ken-Ichi Yoshino</name>
</author>
<author>
<name sortKey="Kondo, Chika" sort="Kondo, Chika" uniqKey="Kondo C" first="Chika" last="Kondo">Chika Kondo</name>
</author>
<author>
<name sortKey="Kawamata, Tomoko" sort="Kawamata, Tomoko" uniqKey="Kawamata T" first="Tomoko" last="Kawamata">Tomoko Kawamata</name>
</author>
<author>
<name sortKey="Oshiro, Noriko" sort="Oshiro, Noriko" uniqKey="Oshiro N" first="Noriko" last="Oshiro">Noriko Oshiro</name>
</author>
<author>
<name sortKey="Yonezawa, Kazuyoshi" sort="Yonezawa, Kazuyoshi" uniqKey="Yonezawa K" first="Kazuyoshi" last="Yonezawa">Kazuyoshi Yonezawa</name>
</author>
<author>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Autophagy (MeSH)</term>
<term>Autophagy-Related Proteins (MeSH)</term>
<term>Microscopy, Electron (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Kinases (chemistry)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Microscopie électronique (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein kinases (composition chimique)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines associées à l'autophagie (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Autophagy-Related Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Autophagy</term>
<term>Microscopy, Electron</term>
<term>Molecular Sequence Data</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Microscopie électronique</term>
<term>Phosphorylation</term>
<term>Protéines associées à l'autophagie</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy is a bulk proteolytic process that is indispensable for cell survival during starvation. Autophagy is induced by nutrient deprivation via inactivation of the rapamycin-sensitive Tor complex1 (TORC1), a protein kinase complex regulating cell growth in response to nutrient conditions. However, the mechanism by which TORC1 controls autophagy and the direct target of TORC1 activity remain unclear. Atg13 is an essential regulatory component of autophagy upstream of the Atg1 kinase complex, and here we show that yeast TORC1 directly phosphorylates Atg13 at multiple Ser residues. Additionally, expression of an unphosphorylatable Atg13 mutant bypasses the TORC1 pathway to induce autophagy through activation of Atg1 in cells growing under nutrient-rich conditions. Our findings suggest that the direct control of the Atg1 complex by TORC1 induces autophagy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19995911</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tor directly controls the Atg1 kinase complex to regulate autophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>1049-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.01344-09</ELocationID>
<Abstract>
<AbstractText>Autophagy is a bulk proteolytic process that is indispensable for cell survival during starvation. Autophagy is induced by nutrient deprivation via inactivation of the rapamycin-sensitive Tor complex1 (TORC1), a protein kinase complex regulating cell growth in response to nutrient conditions. However, the mechanism by which TORC1 controls autophagy and the direct target of TORC1 activity remain unclear. Atg13 is an essential regulatory component of autophagy upstream of the Atg1 kinase complex, and here we show that yeast TORC1 directly phosphorylates Atg13 at multiple Ser residues. Additionally, expression of an unphosphorylatable Atg13 mutant bypasses the TORC1 pathway to induce autophagy through activation of Atg1 in cells growing under nutrient-rich conditions. Our findings suggest that the direct control of the Atg1 complex by TORC1 induces autophagy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kamada</LastName>
<ForeName>Yoshiaki</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan. yoshikam@nibb.ac.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshino</LastName>
<ForeName>Ken-ichi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kondo</LastName>
<ForeName>Chika</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kawamata</LastName>
<ForeName>Tomoko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oshiro</LastName>
<ForeName>Noriko</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yonezawa</LastName>
<ForeName>Kazuyoshi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ohsumi</LastName>
<ForeName>Yoshinori</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071183">Autophagy-Related Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C477823">ATG1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071183" MajorTopicYN="N">Autophagy-Related Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
<ArticleId IdType="pii">MCB.01344-09</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.01344-09</ArticleId>
<ArticleId IdType="pmc">PMC2815578</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Nov 27;389(4):612-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Sep 18;150(6):1507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Apr 16;153(2):381-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 1;20(21):5971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 16;12(8):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Feb;4(2):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):29889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 24;279(39):40584-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Oct 25;333(1-2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8224160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Mar;124(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Oct 15;8(20):2389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7958904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 May 5;210(1):126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7741731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Jun 19;192(2):207-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Jun 19;192(2):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Oct 18;147(2):435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Jan 1;118(Pt 1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15615779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 May;16(5):2544-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15743910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Dec 30;338(4):1884-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jan 9;17(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Feb;12(2):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 May 4;356(2):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17362880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 13;282(28):20329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Jul 13;130(1):165-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):4180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 28;282(52):37298-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 28;451(7182):1069-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 May;19(5):2039-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 May 5;181(3):497-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(5):e2223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2008 Jun;13(6):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18533003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Aug;19(8):3290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Dec;19(12):5506-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jan;29(1):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):1981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):2004-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):1992-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19491929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1999;15:1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kawamata, Tomoko" sort="Kawamata, Tomoko" uniqKey="Kawamata T" first="Tomoko" last="Kawamata">Tomoko Kawamata</name>
<name sortKey="Kondo, Chika" sort="Kondo, Chika" uniqKey="Kondo C" first="Chika" last="Kondo">Chika Kondo</name>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
<name sortKey="Oshiro, Noriko" sort="Oshiro, Noriko" uniqKey="Oshiro N" first="Noriko" last="Oshiro">Noriko Oshiro</name>
<name sortKey="Yonezawa, Kazuyoshi" sort="Yonezawa, Kazuyoshi" uniqKey="Yonezawa K" first="Kazuyoshi" last="Yonezawa">Kazuyoshi Yonezawa</name>
<name sortKey="Yoshino, Ken Ichi" sort="Yoshino, Ken Ichi" uniqKey="Yoshino K" first="Ken-Ichi" last="Yoshino">Ken-Ichi Yoshino</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Kamada, Yoshiaki" sort="Kamada, Yoshiaki" uniqKey="Kamada Y" first="Yoshiaki" last="Kamada">Yoshiaki Kamada</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19995911
   |texte=   Tor directly controls the Atg1 kinase complex to regulate autophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19995911" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020